

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

STATISTICAL ANALYSIS ON SOFTWARE METRICS
AFFECTING MODULARITY IN OPEN SOURCE

SOFTWARE

Andi Wahju Rahardjo Emanuel
1
, Retantyo Wardoyo

2
, Jazi Eko Istiyanto

2
,

Khabib Mustofa
2

1
Bachelor Informatics, Faculty of Information Technology, Maranatha Christian

University, Indonesia
2
Department of Computer Science and Electronics, Faculty of Math and Natural

Sciences, Gadjah Mada University, Indonesia

ABSTRACT

Modularity has been identified by many researchers as one of the success factors of Open Source
Software (OSS) Projects. This modularity trait are influenced by some aspects of software metrics such as
size, complexity, cohesion, and coupling. In this research, we analyze the software metrics such as Size
Metrics (NCLOC, Lines, and Statements), Complexity Metrics (McCabe's Cyclomatic Complexity),
Cohesion Metrics (LCOM4), and Coupling Metrics (RFC, Afferent coupling and Efferent coupling) of 59
Java-based OSS Projects from Sourceforge.net. By assuming that the number of downloads can be used
as the indication of success of these projects, the OSS Projects being selected are the projects which
have been downloaded more than 100,000 times. The software metrics reflecting the modularity of these
projects are collected using SONAR tool and then statistically analyzed using scatter graph, Pearson r
product-moment correlation, and least-square-fit linear approximation. It can be shown that there are only
three independent metrics reflecting modularity which are NCLOC, LCOM4, and Afferent Coupling,
whereas there is also one inconclusive result regarding Efferent Coupling.

KEYWORDS

Open Source Software Project, Modularity, Software Metrics, Statistical Analysis, Java

1. INTRODUCTION

Open Source Software (OSS) Projects nowadays are gaining momentum worldwide and they
are getting more attention not only from large corporations, but also from researchers. Once
only considered an ad hoc software development process performed mainly by academics and
freelance developers in their leisure times, they are now considered one major alternative in
developing software challenging the already developed 'software engineering' methodology
used in commercial or proprietary software projects. OSS Projects are attracting many large
corporations such as Oracle, IBM, Sun Microsystem, etc. in which they are supporting some
large OSS Projects such as Java, Eclipse, and many more. Some of the initially small OSS
Projects are also evolved into large and complex projects and they eventually set up their own
companies or foundations to solidify their organization, such as Red Hat, Apache, Mozilla, etc.
Moreover, many studies are also being conducted using OSS Projects as the research object in
order to find their success factors, evolutions, community developments, and their problem
areas.

DOI : 18.5121/ IJMSN.2018..3308 105

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

Some studies are able to discover the key success factors of the OSS Projects, and one of the
important finding is that one of the key success factors in developing high quality OSS is the
modular architecture of the system [10][14][17][26]. Even though modularity has been
identified as one of the key success factor, how to apply the modularity principles in the early
phase of OSS Projects is not yet clearly understood. The study of the modularity properties of
small to medium sized OSS Projects that considered successful should give some
understanding about this matter. This paper presents the statistical analysis of 59 Java-based
OSS Projects from Sourceforge.net Portal that has been downloaded more than 100k times.
These projects are samples of successful small-to-medium-sized OSS Projects developed using
Java programming languages. The similarities of these OSS Projects in terms of their
modularity properties (size, complexity, cohesion, and coupling) should give better
understanding about the measurement and applications of modularity principles during early
phase which will be the next target of the research.

This paper is organized as follows: section 2 will explain some current studies relating to the
success and also the potential problem in OSS Projects. Section 3 provides some theoretical
background relating to OSS Projects, Software Metrics, and Modularity in OSS Projects.
Section 4 will present the result of the statistical analysis of the 59 OSS Projects. Section 5
will discuss the result with their interpretations. Lastly, section 6 is the conclusion which
includes short summary, conclusion, and future studies.

2. CURRENT STUDIES ON OSS PROJECTS

Many studies have been conducted to identify the key success factors of OSS Projects and they
can be categorized into three approaches. First approach of the study is by studying several
successful OSS Projects, i.e. the study on Debian GNU/Linux [28], FreeBSD [11], Apache
[23], and OpenBSD [18]. The second approach is trying to find the similarity in the processes
in many successful OSS Projects i.e. the study of Apache and Mozilla [22], fifteen OSS
Projects [29], and Arla and Mozila Projects [5]. The third approach focuses on process aspects
such as team communication across for projects with with at least 7 developers and 100
reported bugs [9], the bug arrival rate of 8 OSS Projects [31], activities from CVS Repository
[8], and OSS Projects' dependability [17]. All of these approaches have the same weakness
since they involve only relatively small number of OSS Projects, leading to the consequence
that they may not give good representation of other OSS Project that already numbered in
hundreds of thousands [13] The authors have conducted research of more than 135 k OSS
Projects using Datamining Association Rule to find the success factors of OSS Projects and
able to propose 9 Success Factors [13].

Some other researches are able to identify some alarming potential problems in the OSS
Projects and their communities. In certain phase of the projects, the software system will
increase in complexity that makes it more difficult to be managed by the communities
[14][28]. The ad hoc development of the Open Source System also creates possible decline in
quality [28], coupling explosions [3], and creating poorly coded source code [12], lack of
formal process [8], high entry barrier for new developer to contribute [2], the poor
architectural design and lack of supporting tools which is comparable to modern software
development methodology [11], and lack of documentation which prohibits new developers to
immediately join in the projects [12]. As for the Open Source Communities themselves, the
alarming problems are the frequent / rapid turnovers of volunteers [12] and the fact that only
very few Open Source Projects attract enough support to develop properly [17]. The study of
the cause of failure in OSS Projects is also useful, but finding the problem areas do not
necessarily imply the solutions to the problem.

The current research are the continuation of the previous research [13] in which the subject area are
focused on Java-based OSS Projects with high numbers of downloads (more than 100K

106

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

times). The high number of downloads may indicate the success of these OSS Projects, and by
studying their commonalities in terms of software metrics reflecting modularity (size,
complexity, cohesion, and coupling), some common properties may be found. These common
properties may be implemented in the future Java-based OSS Projects to increase their
possibility of success.

3. THEORETICAL BACKGROUND

The theoretical background of this paper includes short explanations about OSS Projects as
well as the modularity in OSS Projects.

3.1. Open Source Software Project

OSS Project is a software development methodology based on several distinct characteristics
not commonly found in commercial or proprietary software development:

 The source code is freely available for everybody to download, improve and modify

[27]. The licensing scheme of the OSS System such as GPL will ensure the continual
improvement of the applications by requiring everybody who improves the application
to share them to everyone else.

 Person who contribute to the development of the OSS Projects is usually forming a
group called Open Source Communities [8][9]. This community will share information
to each other electronically using email, mailing list, forum etc., and they are seldom
or may be never meet each other face to face. The recruitment process of the
developers are completely voluntary and the hierarchy of the communities are
determined by their loyalty to the project and their technical capabilities.

 The development methods of the OSS Projects are lacking of formal methodology
found in commercially developed software applications. Their primary concern during
the development are adding new features and fixing bugs[8]

Currently, many portals have been developed as a incubator for OSS developers to develop
and host their projects. These portals are equipped with many development tools (version
control, bug tracking, wikis, etc.) and statistics to assist the project initiator or administrator in
improving their OSS Projects and other interested contributors to join the projects. Some of the
popular portals are Sourceforge.net, freshmeat.net, launchpad.net, and Google Code
(http://code.google.com).

3.2. Modularity in OSS Projects

Modularization involves breaking up of an software system into smaller, more independent
elements known as module. Booch has defined modularity as the property of a system whose
modules are cohesive and loosely-coupled [21]. Fenton stated that Modularity is the internal
quality attribute of the software system [21]. It is also known that modularity is directly related
to software architecture, since modularity is separation of a software system in independent
and collaborative modules that can be organized in a software architecture [25]. Modular
software has several advantages such as maintainability, manageability, and comprehensibility
[24], as well as ensuring the legitimate peripheral participation of new members [16].

There are five attributes closely related to modularity in software system which are size, coupling /
dependency, complexity, cohesion, and information hiding. The first attribute is the size of the
module as well as the system in which each module should not be to large in size and additional
features in the system should be translated as the addition in the module of the system. The second
attribute is coupling / dependency which consist of direct / syntactic which can be achieved through
composition, method signatures, class instantiations, and inheritance[6]; and semantic or indirect
coupling [19]. The third attribute is complexity that can

107

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

be measured by using software metrics such as McCabe's Cyclomatic Complexity or
Halstead's Software Metrics [30]. The fourth attribute is cohesion which measure the integrity
of the code inside each of the module. The term used to qualitatively measure cohesion are
high cohesion or low cohesion. The last attribute is information hiding [8] which involves
hiding the details of implementation from external modules.

Relating to the modularity property of a software system, in order to have an ideal modular
software system, the software system should have the following attributes:

 Small size in each module (package) and many modules in the system. Each module /

package should only responsible for simple feature, and the more complex features
should be composed of many of these simple features. The possible software metrics to
measure size are NCLOC, Lines, or Statements.


 Low coupling / dependency [4]: minimization or standardization of coupling /

dependency e.g. through standard format i.e. published APIs [1], elimination of
semantic dependencies, etc. The possible software metrics to measure coupling are
Afferent Coupling, Efferent Coupling, or RFC (Response for a Class).


 Low complexity: hierarchy of modules that prefers flatter than taller dependency

[21][1]. The most popular software metrics to measure complexity is cyclomatic
complexity by McCabe [20].


 High cohesion: high integrity of the internal structure of software modules which is

usually stated as either high cohesion or low cohesion. The better measure of cohesion
in object oriented programming such as Java is LCOM4 or Lack of Cohesion Metrics
version 4 proposed by Hitz and Montazeri [15]


 Open for extension and close to modification[4]: capability of the existing module to

be extended to create a more complex module. And avoid changing already debugged
code. The creation of new modules should be encourage using available extension and
not modifying the already tested module.

This paper will address all of above characteristics except for the last one. The first four
characteristics can be found in the module level (package level in Java-based OSS Projects)
and they can be extracted from SONAR tool. Where as the last characteristics exist in system
level which will be addressed in the next research.

4. STATISTICAL ANALYSIS

4.1. Data Collection Process

There are several consideration and assumption to select which OSS Projects to be analyzed:

 Small to medium size and Java-based OSS Projects. The limitation of the size
(NCLOC) of OSS Projects being evaluated are 170K. Moreover, modularity will be a
lot easier to comprehend in object-oriented programming (C++, Java, etc.) compared
to procedural programming (C, Fortran, etc.), since the concept of module, coupling,
cohesion, etc. are more straightforward. Java-based OSS Projects are selected since
they are among the mostly popular object oriented programming for developing Open
Source Software.


 The Projects should already be downloaded more than 100,000 times. This high

number of downloads may indicate the 'success' of the projects, which in turn may
imply modularity traits that already identified as the success factor of OSS Project.


 The source code of the OSS Project are free of error and compile-able. The SONAR

tool requires that the source code should be compiled first using compile tool such as

108

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

maven, make, or ant. Many of the OSS Projects provides separate binary and source
code and it is difficult to create binary directly from the source code due to several
reasons such as compile error, build tool configuration error, syntax error, etc.

There are many metrics that are able to be collected using SONAR tool, but only several
metrics are selected since they may indicate the level of modularity of the OSS Projects. These
metrics are:

• Size Metrics which consists of :

− NCLOC: the number of non-commenting lines of code. This metrics is the

count of the source code's lines excluding the comment , empty lines, and
white spaces.

− Lines: the number of lines including white spaces, empty lines and comments

in the source code.

− Statements: the number of statements. In Java, a single statement will be
ended with a semi colon.

• Complexity Metrics: Cyclomatic Complexity proposed by McCabe. This metrics

measures the number of decisions caused by conditional statements in the source code
[20].

• Cohesion Metrics: LCOM4 or Lack of Cohesion Method version 4, this version is

better for object oriented programming such as Java as proposed by Hitz and
Montazeri [15] which is the improvement of LCOM1 Chidamber and Kemerer [7].

• Coupling Metrics which consists of:

− RFC: Response for a Class. It is a set of method that may be executed in

response to a message received of an object by that class. This metrics is first
proposed by Chidamber and Kemerer [7].

− Afferent (incoming) Coupling: the number of packages in which depend on

classes within the package. Afferent coupling indicates package's
responsibility.

− Efferent (outgoing) Coupling: the number of packages in which the package

depend upon. Efferent coupling indicates package's independence.

Table 1. shows the list of OSS Projects as a subject for this research. The initial OSS Projects
to be evaluated are 209 projects, but only 59 which are suitable to be evaluated using SONAR
due to the compile-ability consideration. There are total 1885 modules / packages being
measured from these 59 OSS Projects.

Table 1. List of 59 OSS Projects

No Project Name No Project Name No Project Name
1 FreeMind 21 Jajuk 41 FreeGuide TV Guide

2 jEdit 22 FreeTTS 42 Eteria IRC Client

3 TV-Browser - A free EPG 23
A Java library for

43 MeD's Movie Manager reading/writing Excel

4 JFreeChart 24 checkstyle 44 subsonic

5 JasperReports - Java Reporting 25 httpunit 45 kXML

6 OpenProj - Project 26 JMSN 46 Jaxe
109

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

No Project Name No Project Name No Project Name
 Management

7 HyperSQL Database Engine 27 PDFBox 47 The JUMP Pilot Project

8 yura.net 28 JBidwatcher 48
Aglet Software
Development Kit

9 JabRef 29 JTidy 49 Antenna

10 FreeCol 30 Jena 50 CBViewer

11
jTDS - SQL Server and Sybase

31
Jin client for chess

51
Sunflow Rendering

JDBC driver servers System

12 Torrent Episode Downloader 32 SAX: Simple API for 52 Thingamablog
 XML

13 FindBugs 33 jKiwi 53 BORG Calendar

14 PMD 34 Data Crow 54
Directory Synchronize
Pro (DirSync Pro)

15 JGraph Diagram Component 35 Wicket 55 Java Treeview

16 ANts P2P 36
Cewolf - Chart TagLib

56 Java Network Browser Project

17 Paros 37 DrawSWF 57 Red Piranha

18 ProGuard Java Optimizer and 38 c3p0:JDBC DataSources 58 Cobertura
 Obfuscator / Resource Pools

19 TripleA 39 JavaGroups 59 Jake2

20 JSch 40
OmegaT - multiplatform

- - CAT tool

4.2. Statistical Analysis of Software Metrics

The relationship among these metrics are evaluated and analyzed statistically. There are
several steps in performing this analysis:

 Mapping the values of two metrics in scatter graph to show their relationship to each

other. The tool being used to show the scatter graph is using JPGraph
(http://jpgraph.net).


 Measuring the Pearson r product-moment correlation of each of the correlation in the

scatter graph. The value of Pearson r may indicate the level of correlation between the
two metrics.


 Measuring the values of least-square-fit linear approximation which are the gradients

and constants. These values are important only for relationship which is categorized as
high (shown in the value of Pearson r).

Pearson r product-moment correlation shows the possible relationship of two variables. The
possible values of Pearson r (or shortened as r only) varies between -1 (means perfectly
inversely proportional), 0 (no correlation), to 1 (perfectly proportional). In this research, the
possible values of Pearson r ranges from 0 to 1 only, and they are classified into three
categories as shown in Table 2.

110

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

Table 2. Classification of Pearson r Value

Pearson r Ranges Interpretation
Classification

Low 0  r  0.5 There are very small or no correlation between the two variables.

Mid 0.5  r  0.8 The are possibility of indirect correlation between the two variables.
 This correlation may be caused by the third variable which are
 unknown.

High 0.8  r  1 There are correlation which can be assumed as direct correlation
 between the two variables. The values of gradient and constant from
 least-square-fit approximation can be used as the linear formulation
 of these variables.

The following are the result of the statistical analysis of each of the metrics.

4.2.1 Size Metrics (NCLOC, Lines, Statements)

The following is the scatter graph showing the relationship between NCLOC and Lines. Each
of the points in the scatter graph representing packages of OSS Projects. Each dot in the scatter
graph represents a single package of the OSS Projects (total 1885 packages).

Figure 1. Scatter Graph of NCLOC vs. Lines

The scatter graph shows that between NCLOC and Lines have high correlation (r = 0.974),
meaning that there are direct correlation between the two Size Metrics. The same trends also
shown in the correlation with the third size metrics which is statements. Table 3 shows the
correlation of the tree size metrics. The first three column (Metrics, Pearson r, and Least
Square Fit) are aggregate data from 59 OSS Projects (grouped in package or package-wise),
while the last column (r (Count Per Project)) are for each individual OSS Projects (grouped in
class or class-wise).

111

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 3, June 2011

Table 3. Correlation of Size Metrics with Other Metrics

Least Square Fit

r (Count Per
Metrics Pearson r

 Project)

 Gradient Constant low mid high

NCLOC vs. Lines 0.97439 1.58136 197.28146 0 0 59
NCLOC vs. Statements 0.97282 0.54400 -50.34333 0 1 58

NCLOC vs. Complexity 0.94855 0.25596 -30.50913 0 2 57

NCLOC vs. LCOM4 0.75473 0.01023 5.08766 53 5 1
NCLOC vs. RFC 0.90815 0.18544 49.18084 1 12 46

NCLOC vs. Afferent_Coupling 0.50813 0.03093 13.47167 56 2 1

NCLOC vs. Efferent_Coupling 0.81999 0.03502 8.07098 9 40 10

Above table shows that all three Size Metrics (NCLOC, Lines, and Statements) have high
correlation (r more than 0.9) which indicates direct correlation among them. This observation
also confirmed by counting the Pearson r classification for each OSS Projects which shows
that almost all projects having the same trend. Choosing only one of the Size Metrics will also
implies to the other two. Table 3 also shows that the Size Metrics has high correlation with
Complexity Metrics.

The Size Metrics also have high correlation with RFC and Efferent Coupling. In the
correlation with RFC, it also shows that the trends are similar in each OSS Projects. In the
correlation with Efferent Coupling, the table shows that the trends is different in each project
since the correlation is mostly (40 out of 59 projects) are in 'mid' category.

4.2.2 Complexity Metrics (McCabe's Cyclomatic Complexity)

Figure 2 shows the scatter graph NCLOC versus McCabe's Cyclomatic Complexity. This figure
shows that Size Metrics has high correlation with the Complexity Metrics with r = 0.949.

Figure 2. NCLOC vs. Cyclomatic Complexity

Table 4 shows the correlation of Completely Metrics with other metrics (both aggregate or
each individual project).

112

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

Table 4. Complexity Metrics versus Other Metrics

Least Square Fit

r (Count Per
Metrics Pearson r

 Project)

 Gradient Constant low mid high

Complexity vs. NCLOC 0.94855 3.51520 239.43100 0 2 57
Complexity vs. Lines 0.91629 5.51086 590.63047 0 2 57

Complexity vs. Statements 0.96435 1.99843 53.45208 0 2 57

Complexity vs. LCOM4 0.71734 0.03604 7.51613 55 3 1
Complexity vs. RFC 0.85871 0.64982 94.21622 1 14 44

Complexity vs. Afferent_Coupling 0.51157 0.11540 18.82907 55 3 1

Complexity vs. Efferent_Coupling 0.75947 0.12022 17.34922 15 35 9

Table 4 shows that Complexity Metrics has high correlation with Size Metrics and RFC
metrics and has medium to low correlation with other metrics. There are direct relationship
between Completely Metrics with Size Metrics. Similarly, there is also direct relationship
between Complexity Metrics and RFC.

4.2.3 Cohesion Metrics (LCOM4)

Table 5 shows the correlation of Cohesion Metrics (LCOM4) with other metrics in aggregate
data or in individual projects.

Table 5. Cohesion Metrics versus Other Metrics

Least Square Fit

r (Count Per
Metrics Pearson r

 Project)

 Gradient Constant low mid high

LCOM4 vs. NCLOC 0.75473 55.65486 284.39032 53 5 1

LCOM4 vs. Lines 0.76716 91.81064 576.38322 54 4 1

LCOM4 vs. Statements 0.68180 28.11471 144.53654 56 2 1

LCOM4 vs. Complexity 0.71734 14.27406 41.75480 55 3 1

LCOM4 vs. RFC 0.74158 11.16689 86.20232 50 8 1
LCOM4 vs. Afferent_Coupling 0.50617 2.272227 12.03519 57 2 0

LCOM4 vs. Efferent_Coupling 0.75182 2.36831 10.24952 51 7 1

Above table shows that Cohesion Metrics (LCOM4) doesn't have high correlation with other
metrics. The similar trends is also shown in counting the categories of the Pearson r for each
projects in which most of the the values are in ‘low’ category. Based on this result, it can be
concluded that LCOM4 is an independent metrics.

4.2.4 Coupling Metrics (RFC, Efferent Coupling, Afferent Coupling)

Table 6, 7, and 8 shows the correlation of three Coupling Metrics (RFC, Efferent Coupling,
and Afferent Coupling) with other Metrics.

113

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

Table 6. RFC versus Other Metrics

Least Square Fit

r (Count Per
Metrics Pearson r

 Project)

 Gradient Constant low mid high
RFC vs. NCLOC 0.90815 4.44731 12.38407 1 12 46

RFC vs. Lines 0.91075 7.23828 156.51212 0 10 49

RFC vs. Statements 0.87555 2.39763 -37.23211 1 15 43
RFC vs. Complexity 0.85871 1.13474 -26.28144 1 14 44

RFC vs. LCOM4 0.74158 0.04924 4.11878 50 8 1
RFC vs. Afferent_Coupling 0.57580 0.17165 3.84236 53 5 1

RFC vs. Efferent_Coupling 0.87406 0.18284 0.55447 2 36 21

Table 6 shows that RFC has high correlation with Size Metrics (NCLOC, Lines, and
Statements) and Efferent Coupling. As for the correlation with Efferent Coupling, the different
trends are shown in each individual projects in which mostly (36 out of 59 projects) are in
'mid' category.

Table 7. Efferent Coupling versus Other Metrics

Least Square Fit

r (Count Per

Metrics Pearson r
 Project)

 Gradient Constant low mid high

Efferent_Coupling vs. NCLOC 0.81999 19.19538 277.10299 9 40 10

Efferent_Coupling vs. Lines 0.82014 31.15840 591.87991 12 41 6

Efferent_Coupling vs. Statements 0.74694 9.77773 136.46194 16 36 7

Efferent_Coupling vs. Complexity 0.75947 4.79746 46.70467 15 35 9
Efferent_Coupling vs. LCOM4 0.75182 0.23866 5.63360 51 7 1

Efferent_Coupling vs. RFC 0.87406 4.17824 67.00795 2 36 21

Efferent_Coupling vs. Afferent_Coupling 0.52533 0.74863 13.63980 58 0 1

Table 7 shows that Efferent Coupling has similar correlation with RFC in table 6 with one
exception which are the Statements which is slightly lower than the boundary of “high”
classification (r >= 0.8). In counting the r category for each projects, the trends are different in
which most of the projects have 'mid' category. The different results in the correlation of
Efferent Coupling with other Metrics in aggregate data and each individual projects shows that
there are inconclusive result for this metrics.

Table 8. Afferent Coupling versus Other Metrics

Least Square Fit

r (Count Per

Metrics Pearson r

 Project)

 Gradient Constant low mid high

Afferent_Coupling vs. NCLOC 0.50813 8.34703 865.77399 56 2 1

Afferent_Coupling vs. Lines 0.56893 15.16749 1459.60496 55 3 1

Afferent_Coupling vs. Statements 0.46271 4.25045 436.39265 58 0 1
Afferent_Coupling vs. Complexity 0.51157 2.26765 183.98163 55 3 1

Afferent_Coupling vs. RFC 0.57580 1.93149 188.92495 53 5 1

Afferent_Coupling vs. LCOM4 0.50617 0.11275 12.46603 57 2 0
Afferent_Coupling vs. Efferent_Coupling 0.52533 0.36864 34.25975 58 0 1

114

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

Table 8 shows that Afferent Coupling doesn't have high correlation with other metrics. The
count of the Pearson r values for each projects also shows that all of the correlation are in
‘low’ category. It can be concluded that Afferent Coupling is an independent metrics.

5. DISCUSSION

The statistical analysis performed on 1885 modules / packages of 59 OSS Projects has provide
some interesting results. One of the result is the close correlation among three Size Metrics
(NCLOC, Lines, and Statements) despite the different methodology in measuring them. It
means that selecting one of the Size Metrics already represents the other metrics. These
relationships can be stated in linear relationship (from table 3) as follows:

Lines = 1.58136 * NCLOC + 197.28146 …........(1)

Statements = 0.54400 * NCLOC – 50.34333 .…........(2)

The second result is the close correlation of McCabe's Cyclomatic Complexity and Size
Metrics. This may be caused by the level of maturity in the source code of the OSS Projects
being analyzed are already high level so that the complexity of the code is reflected from the
size of the code. The relationship between the McCabe's Cyclomatic Complexity and Size
Metrics (from table 4) is:

NCLOC = 3.51520 * Complexity + 239.43100 …......(3)

The third result is the close correlation of Coupling Metrics’ RFC with Size Metrics (NCLOC,
Lines, Statements) and McCabe's Cyclomatic Complexity. The relationship of RFC with the
Size Metrics may be expressed (from table 6) as follows:

NCLOC = 4.44731 * RFC + 12.38407 ….......(4)

Complexity = 1.13474 * RFC - 26.28144 ….......(5)

The correlation of Efferent Coupling with Size Metrics and Complexity metrics in aggregate
data (grouped in package for all 59 projects) and for each projects (grouped in class for each
project) show different result. The correlation of Efferent Coupling to the other Metrics (Size
and Complexity metrics) are remain inconclusive and this 'anomaly' should be investigated
further in the next research.

The fourth result is the fact that Cohesion Metrics which is LCOM4 and the Coupling Metrics’
Afferent Coupling are independent metrics. These metrics should be considered separately in
terms of modularity since they are not correlated with any other metrics.

6. CONCLUSIONS

This paper presents the statistical analysis of small to medium sized, Java based OSS Projects.
The selection of the projects are based in the number of downloads in which each projects
already being downloaded more than 100K times. The high number of download indicates the
success of these projects, and their modularity properties (size, complexity, cohesion, and
coupling) are analyzed using Pearson r product-moment correlation, scatter graph, and least-
square fit linear approximation. The limitation of project's size in terms of NCLOC are less
than 170K. Out of 209 OSS Projects as the candidate for evaluation, there are only 59 OSS
Projects that are able to be analyzed.

There are some interesting findings from the analysis. The first finding is the close correlation
of the three Size Metrics (NCLOC, Lines, Statements) which indicates the direct relationship
among these metrics. The second finding is the close correlation of Size Metrics and McCabe's
Cyclomatic Complexity. The third finding is also the close correlation of one of the Coupling
Metrics (RFC) with Size Metrics and McCabe's Cyclomatic Complexity and the inconclusive

115

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

result for Efferent Coupling. The last findings is the independence of Cohesion Metrics
(LCOM4) and one Coupling Metrics (Afferent Coupling). These results indicates that there are
only three dimensions that should be considered when analyzing modularity in these OSS
Projects which are Size, Cohesion, and Afferent Coupling.

There are some cautions should be considered when applying these results in broader scope.
These four findings are may be only applicable to small to medium sized (NCLOC < 170K)
and Java-based OSS Projects collected from Sourceforge.net. It can be observed from the
scatter graphs that the deviation from the measured least-square-fit approximation are getting
greater if the package is getting bigger in size. The applications of the results for other object
oriented programming such as C++ may requires adjustment and re-confirmation.

Future study related to this research is further evaluation of these OSS Projects in order unify
the modularity-related metrics into a single metrics called Modularity Index. These index may
serve as a measure quantify the modularity of Java-based OSS Projects. Based in this
Modularity Index, a Software Framework called Modularity Framework may be constructed to
address the last properties of high modular system (see Section 3.2) which is Open for
extension and close to modification. This Software Framework that may be used as guidelines
of OSS Project's Administrator or other developers in developing their projects so that the
chance of success of their projects is higher.

ACKNOWLEDGEMENTS

The authors would like to thank Maranatha Christian University (http://www.maranatha.edu)
that provides funding for the research, and the Department of Computer Science and
Electronics Gadjah Mada University (http://mkom.ugm.ac.id) that provides technical support
for the research.

REFERENCES

[1] Aruna M., M.P. Suguna Devi M.P, Deepa M. (2008), “Measuring the Quality of Software
Modularization using Coupling-Based Structural Metrics for an OOS System”, Proceeding of
the First International Conference on Emerging Trends in Engineering and Technology 2008

[2] Bird C., Gourley A., Devanbu P., Swaminathan A., Hsu G. (2007), “Open Borders?

Immigration in Open Source Projects”, Fourth IEEE International Workshop on Mining
Software Repositories 2007, pp 6.

[3] Bouktif S., Antoniol G., Merlo E. (2006), “A Feedback Based Quality Assessment to Support

Open Source Software Evolution: the GRASS Case Study”, 22nd IEEE International
Conference on Software Maintenance 2006, pp 155 - 165

[4] Cai Y., Huynh S. (2007), “An Evolution Model for Software Modularity Assessment”,

Proceeding of the Fifth International Workshop on Software Qualty 2007 (WoSQ'07).

[5] Capiluppi A., Ramil J.F. (2004), “Studying the Evolution of Open Source Systems at Different
Levels of Granularity: Two Case Studies”, Proceeding on the 7

th
 IEEE International Workshop

of Principles of Software Evolution, 2004, pp 113 - 118.

[6] Capra E., Francalanci C., Merlo F. (2008), “An Empirical Study on the Relationship among
Software Design Quality, Development Effort, and Governance in Open Source Projects”,
IEEE Transactions on Software Engineering, Vol. 34, No. 6, Nov/Dec 2008, pp 765 - 782.

[7] Chidamber S.R., Kemerer C.F. (1994), “Metrics suite for Object Oriented Design”, IEEE

Transaction on Software Engineering, Vol. 20 No. 6 June 1994, pp 476 – 493.

[8] Christley S., Madey G. (2007), “Analysis of Activity in the Open Source Software
Development Community”, Proceeding of the 40

th
 IEEE Annual Hawaii International

Conference on System Sciences, 2007, pp 166b.

116

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

[9] Crowston K., Wei K., Li Q., Howison J. (2006), “Core and Periphery in Free / Libre and Open
Source Software Team Communications”, Proceeding of the 39th IEEE Hawaii International
Conference on System Sciences 2006

[10] DeKoenigsberg G. (2008), “How Successful Open Source Projects Work, and How and Why to

Introduce Students to the Open Source World”, 21st IEEE Conference on Software Engineering
Education and Training, 2008, pp 274 – 276.

[11] Dinh-Trong T., Bieman J.M. (2004), “Open Source Software Development: A Case Study of

FreeBSD”, Proceedings of the 10th IEEE International Symposium on Software Metrics, 2004,
pp 96 - 105.

[12] Ellis H.J.C., Morelli R.A. , Lanerolle T.R., Damon J., Raye J. (2007), “Can Humanitarian

Open-Source Software Development Draw New Students to CS?”, Proceeding of the 38
th

SIGCSE Technical Symposium on Computer Science Education 2007, pp 551 – 555.

[13] Emanuel A.W.R, Wardoyo R., Istiyanto J.E., Mustofa K. (2010), “Success Rules of OSS

Projects Using Datamining 3-Itemset Association Rule”, International Journal of Computer
Science Issue (IJCSI), Vol. 7 Issue 6 Nov. 2010, pp 71 – 80.

[14] Gurbani V.K., Garvert A., Herbsleb J.D. (2005), “A Case Study of Open Source Tools and

Practices in Commercial Setting”, Proceeding of the fifth Workshop on Open Source Software
Engineering 2005, pp 1 - 6.

[15] Hitz M., Montazeri B. (1995), “Measuring Coupling and Cohesion In Object-Oriented

Systems”, Proceeding International Symposium on Applied Corporate Computing, Oct. 25-27
1995, Monterrey, Mexico, 75-76, 197, 78-84

[16] Kishida K., Ye Y.(2003), “Toward an Understanding of the Motivation of Open Source

Software Developers”. IEEE Digital Library 0-7695-1877-X/03: 419 – 429

[17] Lawrie T., Gacek C. (2002), “Issues of Dependability in Open Source Software Development”,
Software Engineering Notes vol 27 no 3 of ACM Sigsoft. May 2002. Pp 34 -37

[18] Li P.L., Herbsleb J., Shaw M. (2005), “ Finding Predictors of Field Defects for Open Source

Software Systems in Commonly Available Data Sources: a Case Study of OpenBSD”,
Proceeding of 11th IEEE International Software Metrics Symposium, 2005, 32.

[19] Matos Jr P., Duarte R., Cardim I., Borba P. (2007), “Using Design Structure Matrices to Assess

Modularity in Aspect-Oriented Software Production Lines”, Proceeding on the First
International Workshop on Assessment of Contemporary Modularization Techniques 2007
(ACoM'07).

[20] McCabe T. (1976), “A Complexity Measure”, IEEE Transactions On Software Engineering,

Vol. Se-2, No. 4, December 1976, pp. 308-320.

[21] Melton H., Tempero E. (2007), “Toward Assessing Modularity”, Proceeding of the First
International Workshop on Assessment of Contemporary Modularization Techniques 2007
(ACoM'07)

[22] Mockus A., Fielding R.T., Herbsleb J.(2002), “Two Case Studies of Open Source Software

Development: Apache and Mozilla”, ACM Transaction on Software Engineering and
Methodology Vol. II No. 3, Juli 2002, 309 – 346

[23] Mockus A, Fielding R.T, Herbsleb J.(2000), “A Case Study of Open Source Software

Development: The Apache Server”, ACM ICSE, 2000, 263 – 272

[24] Munelly J., Fritsch S., Clarke S. (2007) An Aspect-Oriented Approach to the Modularisation of
Context. Proceedings of the Fifth Annual IEEE International Conference on Pervasive
Computing and Communication (PerCom'07)

[25] Nakagawa E.Y, de Sousa E.P.M., de Britto Murata K. (2008), “Software Architecture

Relevance in Open Source Software Evolution: A Case Study”, Annual IEEE International
Computer Software and Application Conference, 2008, pp 1234 – 1239.

117

 International Journal of Mobile ad hoc and sensor networks(IJMSN)Vol.3, No.3,May 2018
.

[26] Paech B, Reuschenbach B (2006), “Open Source Requirements Engineering”, Proceeding of
14th IEEE International Requirement Engineering Conference: 257 - 262

[27] Raymond E.S. (2000), “The Cathedral and the Bazaar”, version 3, Thyrsus Enterprises

(http://www.tuxedo.org/~esr/), 2000.

[28] Spaeth S., Stuermer M. (2007), “Sampling in Open Source Development: The Case for Using
the Debian GNU/Linux Distribution”, Proceedings of the 40

th
 IEEE Hawaii International

Conference on System Sciences, 2007, pp 166a.

[29] von Krogh G., Spaeth S., Haefliger S. (2005), “Knowledge Reuse in Open Source Software: An
Exploratory Study of 15 Open Source Projects”, Proceeding of 38th Hawaii International
Conference on System Sciences, 2005, pp. 198b

[30] Wang Y., Shao J. (2003), “Measurement of the Cognitive Functional Complexity of Software”,

Proceedings of the Second IEEE International Conference on Cognitive Informatics 2003
(ICCI'03).

[31] Zhou F., Davis J. (2008), “A Model of Bug Dynamics for Open Source Software”, The Second

IEEE International Conference on Secure System Integration and Reliability Improvement
2008, pp 185 - 186.

Authors

Andi Wahju Rahardjo Emanuel is a Full Time Lecturer at the Bachelor
Informatics Program, Faculty of Information Technology, Maranatha Christian
University in Bandung, Indonesia. He is currently taking his Doctoral Program
at the Department of Computer Science and Electronics, Gadjah Mada
University in Yogyakarta, Indonesia

Retantyo Wardoyo is an Associate Professor at the Department of Computer
Science and Electronics, Gadjah Mada University in Yogyakarta, Indonesia.

Jazi Eko Istiyanto is a Professor and Head of the Department of Computer
Science and Electronics, Gadjah Mada University in Yogyakarta, Indonesia

Khabib Mustofa is an Assistant Professor at the Department of Computer
Science and Electronics, Gadjah Mada University in Yogyakarta, Indonesia

118

